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ABSTRACT

We present a formulation for multigroup radiation hydrodynamics that is correct to order O(v/c)
using the comoving-frame approach and the flux-limited diffusion approximation. We describe a
numerical algorithm for solving the system, implemented in the compressible astrophysics code, CAS-
TRO. CASTRO uses an Eulerian grid with block-structured adaptive mesh refinement based on a
nested hierarchy of logically-rectangular variable-sized grids with simultaneous refinement in both
space and time. In our multigroup radiation solver, the system is split into three parts, one part that
couples the radiation and fluid in a hyperbolic subsystem, another part that advects the radiation in
frequency space, and a parabolic part that evolves radiation diffusion and source-sink terms. The hy-
perbolic subsystem and the frequency space advection are solved explicitly with high-order Godunov
schemes, whereas the parabolic part is solved implicitly with a first-order backward Euler method.
Our multigroup radiation solver works for both neutrino and photon radiation.
Subject headings: diffusion – hydrodynamics – methods: numerical – radiative transfer

1. INTRODUCTION

Numerical simulations are a useful tool for many radiation hydrodynamic problems in astrophysics. However,
numerical modeling of radiation hydrodynamic phenomena is very challenging for a number of reasons. To achieve a
highly accurate description of the system usually requires a multidimensional treatment with high spatial resolution.
It is also desirable to handle the radiation frequency variable properly, because radiation transport is a frequency-
dependent process. Moreover, the numerical algorithms for radiation hydrodynamics must be stable and efficient.
Core-collapse supernovae are such complex phenomena (Bethe 1990; Kotake et al. 2006; Janka et al. 2007; Janka

2012) that neutrino radiation hydrodynamics simulations have been indispensable for helping understand the explosion
mechanism. Various algorithms have been developed to solve neutrino radiation hydrodynamics equations. Because
of the complexities involved in the problem and the limited computer resources available, various tradeoffs have to
be made. Many of these algorithms are 1D (e.g., Bowers & Wilson 1982; Bruenn 1985; Mezzacappa & Bruenn 1993;
Burrows et al. 2000; Liebendörfer et al. 2004; O’Connor & Ott 2010), or have used the so-called “ray-by-ray” approach,
which does not truly perform multi-dimensional transport (e.g. Burrows et al. 1995; Rampp & Janka 2002; Buras et al.
2006; Takiwaki et al. 2012). The two-dimensional code of Miller et al. (1993) is a gray flux-limited diffusion (FLD)
code that does not include order O(v/c) terms, where v is the characteristic velocity of the system. The 2D multigroup
multiangle code of Livne et al. (2004) does not include all order O(v/c) terms, and in particular it lacks direct coupling
among radiation groups. The two-dimensional algorithm of Hubeny & Burrows (2007) is based on a mixed-frame
formulation of a multigroup two-moment system that is correct to order O(v/c), but it remains to be implemented in
a working code. Swesty & Myra (2009) have developed a fully coupled 2D multigroup FLD code based on a comoving
frame formulation that is correct to order O(v/c). Besides the grid-based methods, smoothed particle hydrodynamics
(SPH) methods have also been applied to multi-dimensional neutrino radiation hydrodynamics simulations of core-
collapse supernovae (e.g., Herant et al. 1994; Fryer & Warren 2002; Fryer et al. 2006), but the SPH scheme has not
yet been extended to multigroup. Recently Abdikamalov et al. (2012) developed a Monte Carlo method for neutrino
transport, but hydrodynamics and radiation transport are not yet coupled in the scheme.
In this paper, we present a numerical algorithm for solving multi-dimensional multigroup photon and neutrino

radiation hydrodynamics equations in the comoving frames that are correct to order O(v/c). Radiation quantities
that are of interest are the radiation energy density, radiation flux, and radiation pressure tensor. It is more accurate
to evolve both the radiation energy density and the radiation flux especially when the radiation is highly anisotropic
and optically thin. However, the two-moment approach is very expensive in terms of computer time and memory for
multi-dimensional multigroup radiation hydrodynamics simulations. Thus, we have adopted the flux-limited diffusion
approach (Alme & Wilson 1973) for computational efficiency. In the FLD approach, only the radiation energy density
needs to be evolved over time, and the radiation flux is derived through a diffusion approximation. Furthermore, we
use an analytic closure for the radiation pressure tensor. We have adopted a multigroup method, in which the radiation
frequency is discretized into multiple groups. The equations we solve are similar to those in Swesty & Myra (2009).
However, we have neglected inelastic scattering of neutrinos on matter, which is currently treated as elastic scattering.
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Since the total cross section for the latter at the neutrino energies near and outside the neutrinospheres are ∼ 20–100
times smaller than the cross sections for scattering off nucleons and nuclei, not including inelastic effects at this stage
has a minor effect on the qualitative behavior of collapse, bounce, and shock dynamics. Nevertheless, the approach of
Thompson et al. (2003) to handle inelasticity and energy redistribution can be incorporated into our scheme. Another
difference between our scheme and the scheme of Swesty & Myra (2009) is that we have developed a Godunov scheme
in which radiation is fully coupled into a characteristic-based Riemann solver for the hyperbolic part of the system.
Many multigroup neutrino transport codes use a fixed Eulerian grid. However, it is difficult to achieve sufficient

resolution in multi-dimensional simulations with this simple approach. To efficiently achieve high resolution, we
use an Eulerian grid with block-structured adaptive mesh refinement (AMR). The AMR algorithm we use has a
nested hierarchy of logically-rectangular variable-sized grids and refines simultaneously in both space and time. AMR
techniques have been successfully used in multi-dimensional multigroup photon radiation transport (Gittings et al.
2008; van der Holst et al. 2011). However, to the best of our knowledge, this is the first time that AMR has been
employed in a multi-dimensional multigroup neutrino solver. Besides AMR, the Arbitrary Lagrange Eulerian (ALE)
method is an alternative approach for mesh refinement. We note that ALE has been successfully employed in multi-
dimensional multigroup neutrino transport (Livne et al. 2004; Burrows et al. 2007; Ott et al. 2008) and photon transport
(Marinak et al. 2001).
We have implemented our algorithm in the compressible astrophysics code, CASTRO. This is the third paper in

a series on the CASTRO code and its numerical algorithms. In our previous papers, we describe our treatment of
hydrodynamics, including gravity and nuclear reactions (Almgren et al. 2010, henceforth Paper I), and our algorithm
for flux-limited gray radiation hydrodynamics based on a mixed-frame formulation (Zhang et al. 2011, henceforth Paper
II). Here, we describe our algorithm for flux-limited multigroup radiation hydrodynamics based on a comoving-frame
formulation.
In § 2, we present the multigroup radiation hydrodynamics equations that CASTRO solves. We show that the

system can be divided into a hyperbolic subsystem (§ 2.3), a subsystem of advection in frequency space (§ 2.4), and
a parabolic subsystem for radiation diffusion (§ 2.5). Analytic results for the mathematical characteristics of the
hyperbolic subsystem are also presented in § 2.3. The hyperbolic and the frequency space advection steps are solved
by an explicit solver, whereas the parabolic subsystems is solved by an iterative implicit solver. We describe the
explicit solvers in § 3.1, followed by a description of the implicit solver in § 3.2. We also discuss acceleration schemes
that can greatly improve the convergence rate of the iterative implicit solver (§ 3.2.4). In § 4, we present results from
a series of test problems. A scaling test is shown in § 5 to demonstrate the scaling behavior of the multigroup group
radiation solver. Finally, the results of the paper are summarized in § 6.

2. MULTIGROUP RADIATION HYDRODYNAMICS

In this section, we present the multigroup radiation hydrodynamics equations that CASTRO solves. Our formulation
is based on a comoving-frame approach, unlike our gray radiation hydrodynamics solver presented in Paper II. In the
comoving-frame approach, the radiation quantities and the opacities are measured in the comoving frames. The set
of equations are correct to order O(v/c). We then derive the multigroup radiation hydrodynamics equations using
frequency space discretization. We also analyze the mathematical characteristics of the system. Here we present the
results in terms of neutrino radiation and indicate modifications needed for photon radiation.

2.1. Frequency-Dependent Radiation Hydrodynamics Equations

The system of neutrino radiation hydrodynamics that is correct to order O(v/c) can be described by

∂ρ

∂t
+∇ · (ρu) = 0, (1)

∂(ρu)

∂t
+∇ · (ρuu) +∇p =

∫ ∞

0

χ

c
F νdν + FG, (2)

∂(ρE)

∂t
+∇ · (ρEu+ pu) = u ·

∫ ∞

0

χ

c
F νdν +

∫ ∞

0

(cκEν − 4πη)dν + u · FG, (3)

∂(ρYe)

∂t
+∇ · (ρYeu) =

∫ ∞

0

ξ(cκEν − 4πη)dν, (4)

∂Eν

∂t
+∇ · (Eνu) = −∇ · F ν − (cκEν − 4πη) +

∂

∂ ln ν
(Pν : ∇u), (5)

(Buchler 1983; Mihalas & Mihalas 1999; Castor 2004; Swesty & Myra 2009). Here ρ, u, p, and E are the mass density,
velocity, pressure, and total matter energy per unit mass (internal energy, e, plus kinetic energy, u2/2), respectively.
Ye is the electron fraction defined to be the net electron number (electrons minus positrons) per baryon. FG is the
external force on the fluid (e.g., gravitational force). Eν , F ν , and Pν are the monochromatic radiation energy density,
radiation flux, and radiation pressure tensor at frequency ν, measured in the comoving fluid frame, respectively. The
speed of light is denoted by c. The absorption coefficient is denoted by κ, and the total interaction coefficient including
conservative scattering is given by χ. The emission coefficient is denoted by η. For photon radiation ξ is zero, whereas
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for neutrinos ξ is given by

ξ = s
mB

hν
, (6)

where mB is the baryon mass, h is the Planck constant, and s = 1 for νe neutrinos, s = −1 for ν̄e neutrinos, and s = 0
for other flavor neutrinos. Also note that for neutrino radiation with multiple species, the integrals over frequency
imply summation over the species. The colon product : in Pν : ∇u indicates contraction over two indices as follows,

Pν : ∇u = (Pν)ij (∇u)ij . (7)

The system of the radiation hydrodynamics (Equations 1–5) is closed by an equation of state (EOS) for matter, the
diffusion approximation for radiation flux, and a closure relation for radiation that computes the radiation pressure
tensor from radiation energy density and radiation flux. In the FLD approximation (Alme & Wilson 1973), the
monochromatic radiation flux is written in the form of Fick’s law of diffusion,

F ν = −cλ
χ
∇Eν , (8)

where λ is the flux limiter at frequency ν. We have implemented a variety of choices for the flux limiter (e.g., Minerbo
1978; Bruenn et al. 1978; Levermore & Pomraning 1981). For example, one form of the flux limiter in Levermore &
Pomraning (1981) is

λ =
2+ R

6 + 3R+R2
, (9)

where

R =
|∇Eν |
χEν

. (10)

In the optically thick limit, R → 0, λ → 1/3, and the flux approaches the classical Eddington approximation F ν ≈
−(c/3χ)∇Eν . In the optically thin limit, R → ∞, λ ≈ 1/R, and F ν ≈ cEν as expected for streaming radiation. For
the radiation pressure tensor, we use an approximate closure (Minerbo 1978; Levermore 1984)

Pν =
1

2
(1 − f)EνI+

1

2
(3f − 1)Eνn̂n̂, (11)

where
f = λ+ λ2R2 (12)

is the scalar Eddington factor, I is the identity tensor of rank 2, and n̂ = ∇Eν/|∇Eν |. There are other choices for the
scalar Eddington factor. For example, Kershaw (1976) has suggested

f =
1

3
+

2

3
λ2R2. (13)

Note that in the optically thick limit, f → 1/3, and in the optically thin limit, f → 1.
Using the FLD approximation and the approximate closure, the equations of the radiation hydrodynamics now

become

∂ρ

∂t
+∇ · (ρu) = 0, (14)

∂(ρu)

∂t
+∇ · (ρuu) +∇p = −

∫ ∞

0

λ∇Eνdν + FG, (15)

∂(ρE)

∂t
+∇ · (ρEu+ pu) = − u ·

∫ ∞

0

λ∇Eνdν +

∫ ∞

0

(cκEν − 4πη)dν + u · FG, (16)

∂(ρYe)

∂t
+∇ · (ρYeu) =

∫ ∞

0

ξ(cκEν − 4πη)dν (17)

∂Eν

∂t
+∇ · (Eνu) = ∇ ·

(

cλ

χ
∇Eν

)

− (cκEν − 4πη)

+
∂

∂ ln ν

(

1− f

2
Eν∇ · u+

3f − 1

2
Eνn̂n̂ : ∇u

)

. (18)

2.2. Multigroup Radiation Hydrodynamics Equations

To numerically solve Equations (14)–(18), we first discretize the system in frequency space by dividing the radiation
into N energy groups. We define the radiation energy density in each group as

Eg =

∫ νg+1/2

νg−1/2

Eνdν, (19)
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where νg−1/2 and νg+1/2 are the frequency at the lower and upper boundaries, respectively, for the g-th group. For

clarity,
∫ νg+1/2

νg−1/2
dν is denoted by

∫

g
dν hereafter.

In the multigroup methods, various group mean coefficients are introduced to the system. For example, the Rosseland
mean interaction coefficient is defined as

χ−1
g =

∫

g
χ−1(∂Bν/∂T )dν
∫

g(∂Bν/∂T )dν
, (20)

where Bν = η/κ. In this paper, we will simply assume that

κg = κ(νg), (21)

χg = χ(νg). (22)

where νg is the representative frequency for the g-th group. Our simple treatment of group mean coefficients is
sufficient for the transport of continuum radiation. In particular, it is sufficient for neutrino transport in the core-
collapse supernova problem because the monochromatic opacities and emissivities of neutrinos are smooth functions
of neutrino frequency. It should, however, be emphasized that our algorithm for radiation hydrodynamics does not
rely on the simple treatment of group mean coefficients used in this paper. We also assume that the flux limiter is
approximately independent of frequency within each group, and denote the flux limiter and the scalar Eddington factor
for the g-th group as λg and fg, respectively. As for the emissivity, we define

jg =
4π

c
η(νg)∆νg , (23)

where ∆νg = νg+1/2 − νg−1/2 is the group width. However, in the case of photon radiation, we have adopted the
polylogarithm function based method of Clark (1987) for computing the group-integrated Planck function. Thus,
assuming local thermodynamic equilibrium, we have for photon radiation

jg =
4π

c
κgBg, (24)

where Bg =
∫

g Bνdν.

Using these definitions and approximations, we obtain the multigroup radiation hydrodynamics equations

∂ρ

∂t
+∇ · (ρu) = 0, (25)

∂(ρu)

∂t
+∇ · (ρuu) +∇p+

∑

g

λg∇Eg = FG, (26)

∂(ρE)

∂t
+∇ · (ρEu+ pu) + u ·

∑

g

λg∇Eg =
∑

g

c(κgEg − jg) + u · FG, (27)

∂(ρYe)

∂t
+∇ · (ρYeu) =

∑

g

cξg(κgEg − jg), (28)

∂Eg

∂t
+∇ ·

(

3− fg
2

Egu

)

− u · ∇
(

1− fg
2

Eg

)

= − c(κgEg − jg) +∇ ·
(

cλg
χg

∇Eg

)

(29)

+

∫

g

∂

∂ν

[

(

1− f

2
∇ · u+

3f − 1

2
n̂n̂ : ∇u

)

νEν

]

dν − 3fg − 1

2
Egn̂n̂ : ∇u,

where g = 1, 2, . . . , N , ξg = ξ(νg),
∑

g denotes
∑N

g=1.

2.3. Mathematical Characteristics of the Hyperbolic Subsystem
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The system of multigroup radiation hydrodynamics (Equations 25–29), similar to the system of gray radiation
hydrodynamics we have studied in Paper II, has a hyperbolic subsystem,

∂ρ

∂t
+∇ · (ρu) = 0, (30)

∂(ρu)

∂t
+∇ · (ρuu) +∇p+

∑

g

λg∇Eg = FG, (31)

∂(ρE)

∂t
+∇ · (ρEu + pu) + u ·

∑

g

λg∇Eg = u · FG, (32)

∂(ρYe)

∂t
+∇ · (ρYeu) = 0, (33)

∂Eg

∂t
+∇ ·

(

3− fg
2

Egu

)

− u · ∇
(

1− fg
2

Eg

)

= 0, (34)

where g = 1, 2, . . . , N . Since Ye is just an auxiliary variable that does not alter the characteristic wave speeds of the
hyperbolic subsystem, we will neglect it in the remainder of this subsection for simplicity. Gravitational force terms
are source terms, and thus they are not included in the following analysis. The term −[(3fg − 1)/2]Egn̂n̂ : ∇u in
Equation (29) is not included in the analysis of the hyperbolic subsystem here even though it becomes comparable to
the term ∇·{[(3−fg)/2]Egu} in Equation (34) in the streaming limit where fg → 1. The first reason for not including
the term is that the main purpose of including radiation in the hyperbolic subsystem is to improve the accuracy in the
optically thick limit where the radiation can affect the hydrodynamics significantly. The term −[(3fg−1)/2]Egn̂n̂ : ∇u
is not significant in the optically thick limit where fg → 1/3. The second reason is that in the streaming limit, where
λ → 0, radiation force has little impact on the motion of matter. Thus, radiation is essentially decoupled from the
hydrodynamics of matter in the streaming limit. Moreover, in the streaming limit the diffusion term ∇· [(cλg/χg)∇Eg ]
(Equation 29) will dominate the term −[(3fg − 1)/2]Egn̂n̂ : ∇u and all the terms in Equation (34). Therefore, the
term −[(3fg − 1)/2]Egn̂n̂ : ∇u is insignificant in both the diffusion limit and the streaming limit.
In CASTRO, we solve the hyperbolic subsystem with a Godunov method, which utilizes a characteristic-based

Riemann solver (see § 3.1 for details). The Godunov method requires that we analyze the mathematical characteristics
of the hyperbolic subsystem. For simplicity, let us consider the system in one dimension, which can be written in
terms of primitive variables as,

∂Q

∂t
+A

∂Q

∂x
= 0, (35)

where the primitive variables are

Q =



















ρ
u
p
E1

E2

...
EN



















, (36)

and the Jacobian matrix is

A =



















u ρ 0 0 0 . . . 0
0 u 1/ρ λ1/ρ λ2/ρ . . . λN/ρ
0 γp u 0 0 . . . 0
0 E1(3− f1)/2 0 u 0 . . . 0
0 E2(3− f2)/2 0 0 u . . . 0
...

...
...

...
...

. . .
...

0 EN (3− fN)/2 0 0 0 . . . u



















, (37)

where γ is the adiabatic index of the matter. This system is hyperbolic because the Jacobian matrix is diagonalizable
with N + 3 real eigenvalues,

u− cs, u+ cs, u, u, u, . . . , u. (38)

Here

cs =

√

√

√

√γ
p

ρ
+
∑

g

(

3− fg
2

)(

λgEg

ρ

)

=

√

c2m +
∑

g

c2g (39)

is the radiation modified sound speed, where cm =
√

γp/ρ is the sound speed without radiation and cg =
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√

[(3− fg)/2](λgEg/ρ) is the contribution to the sound speed from each group. The corresponding right eigenvectors
are,





















1
−cs/ρ
γp/ρ
c21/λ1
c22/λ2

...
c2N/λN





















,





















1
cs/ρ
γp/ρ
c21/λ1
c22/λ2

...
c2N/λN





















,



















1
0
0
0
0
...
0



















,



















0
0

−λ1
1
0
...
0



















,



















0
0

−λ2
0
1
...
0



















, . . . ,



















0
0

−λN
0
0
...
1



















, (40)

and the corresponding left eigenvectors are,

(0, −ρ/2cs, 1/2cs
2, λ1/2cs

2, λ2/2cs
2, . . . , λN/2cs

2),
(0, ρ/2cs, 1/2cs

2, λ1/2cs
2, λ2/2cs

2, . . . , λN/2cs
2),

(1, 0, −1/cs
2, −λ1/cs2, −λ2/cs2, . . . , −λN/cs2),

(0, 0, −ω1/λ1, 1− ω1, −ω1λ2/λ1, . . . , −ω1λN/λ1),
(0, 0, −ω2/λ2, −ω2λ1/λ2, 1− ω2, . . . , −ω2λN/λ2),

... ,
(0, 0, −ωN/λN , −ωNλ1/λN , −ωNλ2/λN , . . . , 1− ωN ),

(41)

where

ωg =
c2g
c2s
. (42)

These N + 3 eigenvectors define the characteristic fields for the one-dimensional system. By computing the product
of the right eigenvectors and the gradients of their corresponding eigenvalues (LeVeque 2002), we find that the first
and second fields are genuinely nonlinear corresponding to either a shock wave or a rarefaction wave. The rest of the
fields are linearly degenerate corresponding to a contact discontinuity in either density or radiation energy density
of one group moving at a speed of u. Note that there is also a jump in fluid pressure such that the total pressure,
ptot = p +

∑

g λgEg, is constant across the contact discontinuity. Obviously, in three dimensions, there are two
additional contact discontinuities for transverse velocities just like the case of pure hydrodynamics.

2.4. Advection in Frequency Space

The integrals in Equation (29) form the following system,

∂Eg

∂t
=

∫

g

∂

∂ν

[(

1− f

2
∇ · u+

3f − 1

2
n̂n̂ : ∇u

)

νEν

]

dν, (43)

which can also be written in the conservation law form

∂q1
∂t

+
∂(aqq1)

∂ ln ν
= 0, (44)

where q1 = νEν and aq = −[(1− f)/2](∇·u)− [(3f − 1)/2]n̂n̂ : ∇u. Here we have used Equation (19). Equation (44)
describes the advection of q1 in logarithmic frequency space with an advection speed of aq. Because

∫

q1d ln ν is the
integrated radiation energy, the system conserves energy.
Various terms in Equation (29) have been split between the hyperbolic subsystem (§ 2.3) and the system for the

advection in the frequency space (§ 2.4). There is however another way to look at Equation (29). The evolution of
the radiation energy density (Equation 29) without the diffusion term ∇ · [(cλg/χg)∇Eg] and the source-sink term
−c(κgEg − jg) can also be split as

∂Eg

∂t
= −∇ · (Egu), (45)

∂Eν

∂t
=

∂

∂ ln ν

[(

1− f

2
∇ · u+

3f − 1

2
n̂n̂ : ∇u

)

Eν

]

. (46)

Equation (46) also represents an advection in logarithmic frequency space and can be written in the form

∂q2
∂t

+
∂(aqq2)

∂ ln ν
= 0, (47)

where q2 = Eν . Here the conserved quantity is the number of radiation particles (i.e.,
∫

Eν/ν dν). This new way of
splitting will be further discussed later in Section 3.1.
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2.5. Multigroup Radiation Diffusion

The parabolic part of the system consists of the radiation diffusion and source-sink terms, which were omitted from
the discussion of the hyperbolic subsystem (§ 2.3) and advection in frequency space (§ 2.4),

∂(ρe)

∂t
=
∑

g

c(κgEg − jg), (48)

∂(ρYe)

∂t
=
∑

g

cξg(κgEg − jg), (49)

∂Eg

∂t
= − c(κgEg − jg) +∇ ·

(

cλg
χg

∇Eg

)

, (50)

where e is the specific internal energy of the fluid, and g = 1, 2, . . . , N . The term c(κgEg − jg) represents the energy
exchange in the comoving frame between the matter and the g-th radiation group through absorption and emission of
radiation. Note that the terms on the right-hand side (RHS) of Equations (48), (49), and (50) all contain the speed of
light c. Thus these are order O(1) terms in v/c. An implicit treatment for these equations is usually necessary because
of their stiffness. For photon radiation, Equation (49) is not needed.

3. NUMERICAL METHODS

CASTRO uses a nested hierarchy of logically-rectangular, variable-sized grids with simultaneous refinement in both
space and time. The AMR algorithms for hyperbolic and radiation diffusion equations in CASTRO have been described
in detail in Papers I and II, respectively. The multigroup solver does not require any changes in the AMR algorithms.
Thus, we will not describe them again in this paper.
In this section, we describe the single-level integration scheme. For each step at a single level of refinement, the state

is first evolved using an explicit method for the hyperbolic subsystem (Equations 30–34) and advection in frequency
space (§ 3.1). Then an implicit update for radiation diffusion and source-sink terms is performed (§ 3.2). In § 3.2.4, we
describe two acceleration schemes for speeding up the convergence rate of the implicit solver for multigroup radiation
diffusion equations.

3.1. Explicit Solver for Hyperbolic subsystem and Advection in Frequency Space

The hyperbolic subsystem (§ 2.3) is treated explicitly. Our Godunov algorithm for the hyperbolic subsystem of the
multigroup radiation hydrodynamics is an extension of the hyperbolic solver for the gray radiation hydrodynamics
presented in Paper II , which in turn is based on the hydrodynamics algorithm presented in Paper I of this series.
We refer the reader to Papers I and II for a detailed description of the integration scheme, which supports a general
equation of state, self-gravity, nuclear reactions, the advection of nuclear species and electron fraction. Here we will
only present a brief overview of the Godunov scheme.
The time evolution of the hyperbolic subsystem can be written in the form

∂U

∂t
= −∇ · F , (51)

where U = (ρ, ρu, ρE,E1, E2, . . . , EN )T denotes the conserved variables, and F is their flux. The conserved variables
are defined at cell centers. We predict the primitive variables, including ρ, u, p, ρe, Eg, where g = 1, 2, . . . , N ,

from cell centers at time tn to edges at time tn+1/2 and use an approximate Riemann solver to construct fluxes,

F n+1/2, on cell faces. This algorithm is formally second order in both space and time. The time step is computed
using the standard Courant-Friedrichs-Lewy (CFL) condition for explicit methods, and the sound speed used in the
computation is now the radiation modified sound speed cs (Equation 39). The time step is also limited by maximally
allowed changes in temperature and electron fraction in the implicit solver. Additional constraints for the time step
are applied if additional physics, such as burning, is included. CASTRO solves the hyperbolic subsystem of radiation
hydrodynamics with an unsplit piecewise parabolic method (PPM) with characteristic tracing and full corner coupling
(Miller & Colella 2002). An approximate Riemann solver based on the Riemann solver of Bell et al. (1989) and Colella
et al. (1997), that utilizes the eigenvectors of the system, is used to compute the Godunov states and fluxes at the cell
interface.
Advection in frequency space (§ 2.4) can also be treated explicitly because its time scale is comparable to that

of the hyperbolic subsystem. One approach is to adopt an operator-splitting method and to evolve Equation (44)
with a Godunov method. This is the approach taken by van der Holst et al. (2011) in the CRASH code for photon
radiation. The term −[(3fg − 1)/2]Eνn̂n̂ : ∇u can be treated as a source term of Equation (44). The success of
this approach for a number of test problems has been demonstrated by van der Holst et al. (2011). We have also
found that this approach can produce satisfactory results for all the photon test problems in Section 4. However,
we have found that erroneous results were obtained for core-collapse supernova simulations (§ 4.2), probably due to
operator-splitting errors. One difficulty in core-collapse supernova simulations is that the divergence of velocity can be
significant because there is a strong shock and the typical velocity in front of the shock is ∼ 0.1–0.2 c. In the case of
core-collapse supernovae, the negative divergence of velocity will shift neutrinos towards high frequency (Equation 44).
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The stronger conservative scattering at higher frequency can further amplify the neutrino energy density due to the
work term u · ∇{[(1 − fg)/2]Eg} (Equation 34). These two processes can combine to cause unphysical results due to
splitting errors. However, the origin of the various terms involved in these two processes is the term ∂(Pν : ∇u)/∂ ln ν
in Equation (5). To avoid operator-splitting errors, it is therefore desirable to treat the term ∂(Pν : ∇u)/∂ ln ν without
splitting it. On the other hand, the term can also make significant contribution to the hyperbolic subsystem in the
optically thick limit, and we do not wish to sacrifice accuracy of the hyperbolic subsystem by taking the traditional
approach of leaving out radiation from the Riemann solver for the hydrodynamics.
To avoid the operator-splitting without sacrificing the accuracy of the hyperbolic subsystem, we have adopted a

new approach based on splitting the radiation energy density equation into Equations (45) and (46). Note that the
radiation diffusion and source-sink terms will be treated separately by an implicit solver (§ 3.2). Our new approach
still utilizes the Godunov scheme for the hyperbolic subsystem governed by Equations (30)–(34). After the Godunov
states and fluxes at the cell interfaces are obtained, all variables in the hyperbolic system except the radiation energy
density are updated as usual. For the radiation energy density, two steps are taken. The radiation energy density is
first updated according to Equation (45) with its RHS computed using the Godunov states. Then another Godunov
solver is used to evolve Equation (47), which is equivalent to Equation (46). The conversion between Eg and Eν is

performed according to Eg = Eν(νg)νg∆ ln νg. The Godunov states at time tn+1/2 of the first Godunov solver are
used in computing ∇ ·u and ∇u to obtain the wave speed aq in the frequency space advection. The second Godunov
scheme for the frequency space advection is a standard approach based on the method of lines. For time integration
we use the third-order total variation diminish Runge-Kutta scheme of Shu & Osher (1988). We use the piecewise
linear method with a monotonized central slope limiter (van Leer 1977) to reconstruct q2 and aq in order to achieve
high order in (logarithmic frequency) space. The reconstructed variables are used to compute the HLLE flux (Harten
et al. 1983; Eisenstat 1981). The frequency space advection has its own CFL condition for stability. Since CASTRO
uses the hydrodynamic CFL condition with other additional constraints for the time steps, if necessary, subcycling in
time is employed in order to satisfy the frequency space CFL condition.

3.2. Implicit Solver for Radiation Diffusion and Source-Sink Terms

The implicit solver evolves the radiation and matter according to equations (48), (49), and (50) with the results of
the explicit update (§ 3.1) as the initial conditions. Our scheme is based on a first-order backward Euler method.

3.2.1. Outer Newton Iteration

We solve the parabolic subsystem (Equations 48, 49, and 50) iteratively via Newton’s method. We define

Fe = ρe− ρe− −∆t
∑

g

c(κgEg − jg), (52)

FY = ρYe − ρY −

e −∆t
∑

g

cξg(κgEg − jg), (53)

Fg = Eg − E−

g −∆t∇ ·
(

cλg
χg

∇Eg

)

+∆t c(κgEg − jg), (54)

where the − superscript denotes the state following the explicit update, and g = 1, 2, . . . , N . The desired solution is
for Fg, Fe and FY to all be zero. We approach the solution by Newton iteration, and in each iteration step we solve
the following system







(∂Fe/∂T )
(k) (∂Fe/∂Ye)

(k) (∂Fe/∂Eg)
(k)

(∂FY /∂T )
(k) (∂FY /∂Ye)

(k) (∂FY /∂Eg)
(k)

(∂Fg/∂T )
(k) (∂Fg/∂Ye)

(k) (∂Fg/∂Eg)
(k)











δT (k+1)

δY
(k+1)
e

δE
(k+1)
g



 =







−F (k)
e

−F (k)
Y

−F (k)
g






. (55)

Here δT (k+1) = T (k+1)−T (k), δY
(k+1)
e = Y

(k+1)
e −Y (k)

e and δE
(k+1)
g = E

(k+1)
g −E(k)

g , where the (k) superscript denotes
the stage of the Newton iteration. The exact Jacobian matrix in equation (55) is very complicated. For simplicity, we
neglect the derivatives of the diffusion coefficient cλg/χg. This is a common practice in radiation transport, and does
not appear to significantly degrade the convergence rate. With the approximate Jacobian matrix, we can eliminate

δT and δYe from equation (55) and obtain the following equation for E
(k+1)
g ,

(

cκg +
1

∆t

)

E(k+1)
g −∇ ·

(

cλg
χg

∇E(k+1)
g

)

= cjg +
E−

g

∆t

+Hg



c
∑

g′

(

κg′E
(k+1)
g′ − jg′

)

− 1

∆t
(ρe(k) − ρe−)





+Θg



c
∑

g′

ξg′

(

κg′E
(k+1)
g′ − jg′

)

− 1

∆t
(ρY (k)

e − ρY −

e )



 .

(56)
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To reduce clutter, we have dropped the (k) superscript for λg, κg, χg, and jg. The newly introduced variables in
equation (56) are given by

Hg =

(

∂jg
∂T

− ∂κg
∂T

E(k)
g

)

ηT −
(

∂jg
∂Ye

− ∂κg
∂Ye

E(k)
g

)

ηY , (57)

Θg =

(

∂jg
∂Ye

− ∂κg
∂Ye

E(k)
g

)

θY −
(

∂jg
∂T

− ∂κg
∂T

E(k)
g

)

θT , (58)

where

ηT =
c∆t

Ω

[

ρ+ c∆t
∑

g

ξg

(

∂jg
∂Ye

− ∂κg
∂Ye

E(k)
g

)

]

, (59)

ηY =
c∆t

Ω

[

c∆t
∑

g

ξg

(

∂jg
∂T

− ∂κg
∂T

E(k)
g

)

]

, (60)

θT =
c∆t

Ω

[

ρ
∂e

∂Ye
+ c∆t

∑

g

(

∂jg
∂Ye

− ∂κg
∂Ye

E(k)
g

)

]

, (61)

θY =
c∆t

Ω

[

ρ
∂e

∂T
+ c∆t

∑

g

(

∂jg
∂T

− ∂κg
∂T

E(k)
g

)

]

, (62)

Ω =

[

ρ
∂e

∂T
+ c∆t

∑

g

(

∂jg
∂T

− ∂κg
∂T

E(k)
g

)

][

ρ+ c∆t
∑

g

ξg

(

∂jg
∂Ye

− ∂κg
∂Ye

E(k)
g

)

]

−
[

ρ
∂e

∂Ye
+ c∆t

∑

g

(

∂jg
∂Ye

− ∂κg
∂Ye

E(k)
g

)

][

c∆t
∑

g

ξg

(

∂jg
∂T

− ∂κg
∂T

E(k)
g

)

]

. (63)

Here all the derivatives are computed from the results of the previous Newton iteration (i.e., the (k) state).

3.2.2. Inner Iteration

We now present our algorithm for solving equation (56), which is actually a set of N equations coupled through the
summation terms on the RHS of equation (56). The system is usually too large to be solved directly. Instead, we solve
it by decoupling the groups and utilizing an iterative method. Note that the iteration here for solving equation (56) is
different from the Newton iteration for solving the entire parabolic subsystem. The inner iteration here is embedded
inside the outer Newton iteration step. In our algorithm, we avoid the coupling by replacing the radiation energy
density in the coupling terms with its state from the previous inner iteration. Thus, each step of the inner iteration
solves

(

cκg +
1

∆t

)

Eℓ+1
g −∇ ·

(

cλg
χg

∇Eℓ+1
g

)

= cjg +
E−

g

∆t

+Hg



c
∑

g′

(

κg′Eℓ
g′ − jg′

)

− 1

∆t
(ρe(k) − ρe−)





+Θg



c
∑

g′

ξg′

(

κg′Eℓ
g′ − jg′

)

− 1

∆t
(ρY (k)

e − ρY −

e )



 .

(64)

where ℓ is the inner iteration index. Here, we have dropped the (k + 1) superscript for Eℓ+1
g and Eℓ

g to reduce
clutter. For the first inner iteration, the state of the previous inner iteration is set to the result of the previous outer
iteration. The inner iteration for equation (64) is stopped when the maximum of

∑

g |(Eℓ+1
g − Eℓ

g)|/
∑

g E
ℓ+1
g on the

computational domain is below a preset tolerance (e.g., 10−6).
CASTRO can solve equations in the following canonical form (Paper II)

AEℓ+1
g −

∑

i

∂

∂xi

(

Bi

∂Eℓ+1
g

∂xi

)

+
∑

i

∂

∂xi
(

CiE
ℓ+1
g

)

+
∑

i

Di

∂Eℓ+1
g

∂xi
= RHS, (65)

where A are cell-centered coefficients and Bi, Ci, and Di are centered at cell faces. We use the same approach for
spatial discretization at the AMR coarse-fine interface as in Almgren et al. (1998). For equation (64) the Ci and Di

coefficients are not used. The same canonical form works for Cartesian, cylindrical, and spherical coordinates so long
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as appropriate metric factors are included in the coefficients and the RHS. CASTRO uses the hypre library (Falgout
& Yang 2002; hypre Code Project 2012) to solve the linear system.

3.2.3. Matter Update

When the numerical solution to equation (56) is obtained via the inner iteration (Equation 64), we update the matter
and continue with the next outer iteration until convergence is achieved. Using Equation (55), we can obtain

δT (k+1) = ηT

[

∑

g

(κgE
(k+1)
g − jg)−

ρe(k) − ρe−

c∆t

]

− θT

[

∑

g

ξg(κgE
(k+1)
g − jg)−

ρY
(k)
e − ρY −

e

c∆t

]

, (66)

δY (k+1)
e = − ηY

[

∑

g

(κgE
(k+1)
g − jg)−

ρe(k) − ρe−

c∆t

]

+ θY

[

∑

g

ξg(κgE
(k+1)
g − jg)−

ρY
(k)
e − ρY −

e

c∆t

]

. (67)

Thus we could update the matter temperature as T (k+1) = T (k) + δT (k+1) and electron fraction as Y
(k+1)
e = Y

(k)
e +

δY
(k+1)
e , and then compute the matter specific internal energy e(k+1) from T (k+1) and Y

(k+1)
e . However, the total

energy (radiation energy plus matter internal energy) and lepton number would not be conserved in this type of
updates. Furthermore, our experience with this approach is that sometimes the update gives T and Ye that are out of
the bounds of opacity and EOS tables used in our core-collapse simulations and hence causes convergence issues. Thus
a different approach is taken in CASTRO. To conserve the total energy and lepton number, we update the matter as
follows,

ρe(k+1) = Hρe(k) + (1−H)ρe− +Θ(ρY (k)
e − ρY −

e )

+ c∆t
∑

g

[

(κgE
ℓ+1
g − jg)− (H +Θξg)(κgE

ℓ
g − jg)

]

, (68)

ρY (k+1)
e = Θ̄ρY (k)

e + (1 − Θ̄)ρY −

e + H̄(ρe(k) − ρe−)

+ c∆t
∑

g

[

ξg(κgE
ℓ+1
g − jg)− (H̄ + Θ̄ξg)(κgE

ℓ
g − jg)

]

, (69)

whereH =
∑

gHg, Θ =
∑

g Θg, H̄ =
∑

g ξgHg, and Θ̄ =
∑

g ξgΘg. Then we compute temperature T (k+1) and electron

fraction Y
(k+1)
e from the newly updated ρe(k+1) and ρY

(k+1)
e . We also compute the new absorption, scattering and

emission coefficients using the new temperature and electron fraction. By updating the matter using equations (68)
and (69), the implicit algorithm conserves the total energy and electron lepton number regardless of the accuracy of
the solution to the parabolic subsystem.
The outer iteration for solving equations (48) – (50) uses the following convergence criteria:

|T (k+1) − T (k)| < ǫT (k+1), (70)

|Y (k+1)
e − Y (k)

e | < ǫY (k+1)
e , (71)

|F (k+1)
e | < ǫ ρ

[

|( ∂e
∂T

)(k+1)||T (k+1) − T (k)|+ |( ∂e
∂Ye

)(k+1)||Y (k+1)
e − Y (k)

e |
]

, (72)

|F (k+1)
Y | < ǫ ρY (k+1)

e , (73)

where ǫ is a small number such as ǫ = 10−6. We do not use the relative error of the matter specific internal energy e
because it may not accurately reflect the error since that e can be shifted by an arbitrary amount. Typically, the outer
iteration is stopped only when all four conditions (Inequalities 70 – 73) are satisfied. But for problems with extremely
high opacities, Inequalities (72) & (73) can be difficult to achieve, and only Inequalities (70) & (71) are used.

3.2.4. Acceleration Scheme

We solve the multigroup diffusion equation (Equation 56) using an iterative method. The system of the multigroup
radiation diffusion equations is coupled. Each individual radiation group depends on the matter, which in turn depends
on all radiation groups. When the coupling is strong (e.g., large opacity and small heat capacity) and/or the time step
is large, the convergence rate of the iterative method we have presented in § 3.2.2 can be very slow. To improve the
convergence rate, we have extended the synthetic acceleration scheme of Morel et al. (1985, 2007) for photon radiation
to neutrino radiation, and have developed two types of acceleration schemes.



Castro Radiation 11

Local Acceleration Scheme— We define the error of radiation energy density after ℓ inner iterations as

ǫℓ+1
g = Ee

g − Eℓ+1
g , (74)

where Ee
g is the exact solution of Equation (56) and Eℓ+1

g is the result of the ℓ-th inner iteration via Equation (64).

In our local acceleration scheme, the spatial derivatives of ǫℓ+1
g are assumed to be zero. This is justified because the

spatially constant limit corresponds to the most slowly convergent mode (Morel et al. 1985) and our goal is to improve
the convergence rate by curing the slowest decaying mode of the errors. Using equations (56) and (64), we derive an
equation for the error in the g-th group,

κtgǫ
ℓ+1
g −Hg

∑

g′

κg′ǫℓ+1
g′ −Θg

∑

g′

ξg′κg′ǫℓ+1
g′ = Hgr

ℓ+1
T +Θgr

ℓ+1
Y , (75)

where

κtg = κg +
1

c∆t
, (76)

rℓ+1
T =

∑

g′

κg′(Eℓ+1
g′ − Eℓ

g′), (77)

rℓ+1
Y =

∑

g′

ξg′κg′(Eℓ+1
g′ − Eℓ

g′). (78)

Eq. 75 can be solved analytically, and gives

ǫℓ+1
g =

(qHg + rΘg)r
ℓ+1
T + (pΘg + sHg)r

ℓ+1
Y

κtg(pq − rs)
, (79)

where

p = 1−
∑

g

Hgκg
κtg

, (80)

q = 1−
∑

g

Θgξgκg
κtg

, (81)

r =
∑ Hgξgκg

κtg
, (82)

s =
∑ Θgκg

κtg
. (83)

The improved solution is therefore

Eℓ+1
g := Eℓ+1

g + ǫℓ+1
g . (84)

The acceleration is placed after the convergence check for the inner iteration so that no unnecessary acceleration is
applied to converged solutions.

Gray Acceleration Scheme— The original acceleration scheme of Morel et al. (1985) utilizes a gray diffusion equation for
errors. It is postulated that the normalized multigroup spectrum of the errors is given by the normalized equilibrium
spectrum. Note that our local acceleration scheme is based on the assumption of local equilibrium. Therefore the
spectrum defined as

ψg =
ǫℓ+1
g

∑

g′ ǫ
ℓ+1
g′

, (85)

is postulated to be

ψg =
ǫ̃ℓ+1
g

∑

g′ ǫ̃
ℓ+1
g′

, (86)

where ǫ̃ℓ+1
g is the solution of the local acceleration scheme (Equation 79). Substituting Eℓ+1

g = Ee
g − ǫℓ+1

g into Eq. 64
and summing over groups, we obtain

Aǫℓ+1 −∇ · (d̄∇ǫℓ+1) +∇ · (φǫℓ+1) = cHrℓ+1
T + cΘrℓ+1

Y , (87)
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where

ǫℓ+1 =
∑

g

ǫℓ+1
g , (88)

A = c(1−H)κ̄− cΘκ̄Y +
1

∆t
, (89)

d̄ =
∑

g

ψg
cλg
χg

, (90)

φ = −
∑

g

cλg
χg

∇ψg, (91)

κ̄ =
∑

g

ψgκg, (92)

κ̄Y =
∑

g

ψgξgκg. (93)

Equation (87) is in the canonical form that CASTRO solves (Equation 65). The solution of the gray diffusion equation
for error, ǫℓ+1, is used to obtain the improved multigroup solution

Eℓ+1
g := Eℓ+1

g + ψgǫ
ℓ+1. (94)

We note again that the acceleration operation is placed after the convergence check for the inner iteration so that no
unnecessary acceleration is applied to converged solutions.

4. TEST PROBLEMS

In this section we present detailed tests of the code demonstrating its ability to handle a wide range of radiation
hydrodynamics problems. Photon radiation problems are presented in Section 4.1, whereas Section 4.2 shows neutrino
radiation hydrodynamics simulations of core-collapse supernovae. Note that not every term or equation in the full
system of radiation hydrodynamics is included in every test. This allows various parts of the code to be tested
separately.
A CFL number of 0.8 is used for these tests unless stated otherwise or a fixed time step is used. For photon radiation

test problems, no additional constraint is posed by the implicit solver. For core-collapse supernova simulations, the
time step is further constrained by limiting the estimated relative changes in temperature to less than 1% and the
estimated absolute changes in electron fraction to less than 0.01 using the change rates from the previous time step, and
in our simulations this only happens around the time of core bounce. The relative tolerances for both the outer and the
inner iterations in the implicit update are 10−6. All convergence criteria for the outer iteration (Inequalities 70 – 73)
are used except for the tests in Sections 4.1.4 and 4.1.7 with extremely high opacities. By default, the radiation groups
are uniform in logarithmic frequency space, and the representative frequency for the g-th group is νg =

√
νg−1/2νg+1/2.

For AMR simulations, the “deferred sync” scheme (Paper II) is used for flux synchronization between coarse and fine
levels in the implicit solver.

4.1. Photon Radiation Test Problems

4.1.1. Linear Multigroup Diffusion

In this problem, we simulate a linear multigroup diffusion test problem introduced by Shestakov & Bolstad (2005).
This can test the multigroup diffusion part of the system

∂(ρe)

∂t
=
∑

g

c(κgEg − jg) (95)

∂Eg

∂t
= − c(κgEg − jg) +∇ ·

(

cλg
χg

∇Eg

)

. (96)

To make the nonlinear system mathematically tractable, Shestakov & Bolstad (2005) linearize the system using the
following assumptions. First, the absorption coefficient is assumed to be proportional to ν−3, and the group-averaged
absorption is given by

κg = Cκν
−3
g , (97)

where Cκ is a constant. Second, radiation emission is assumed to obey Wien’s law rather than Planck’s law, and it is
further modified so that

Bg =
2πh

c2
ν3g

[

exp

(

−hνg−1/2

kTf

)

− exp

(

−hνg+1/2

kTf

)]

T, (98)
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Fig. 1.— Linear multigroup diffusion test. Numerical results are shown in lines, whereas the analytic solutions are shown in circle symbols.
We show dimensionless total radiation energy density and temperature at the dimensionless time of 1 in panels (a) and (b), respectively.
The spatial coordinate x is also dimensionless.

TABLE 1
Relative errors of linear multigroup diffusion test problem.

The relative errors of temperature and total radiation
energy density at the dimensionless time of 1 are shown.

xa ǫ(T )× 103 ǫ(Er)× 103 x ǫ(T )× 103 ǫ(Er) × 103

0.00 0.0017 0.3209 0.51 4.8283 0.2585
0.20 0.0016 0.3220 0.52 1.8030 0.0232
0.40 0.0007 0.3460 0.53 1.0335 0.1495
0.46 0.0077 0.4095 0.54 0.7124 0.2330
0.47 0.0170 0.4443 0.60 0.3104 0.5469
0.48 0.0461 0.5136 0.80 0.5774 1.4067
0.49 0.2195 0.7169 1.00 1.3612 2.2413
0.50 0.0020 0.3712

a Dimensionless spatial coordinate

where Tf is a fixed temperature. Note that the group-integrated Bg now has linear dependence on T . Finally, there
is no scattering, and the diffusion is not flux limited. Under these assumptions, Shestakov & Bolstad (2005) have
obtained exact solutions for the linearized system.
The test we have simulated is the first problem in Shestakov & Bolstad (2005). We have set up the test using physical

units rather than the dimensionless units of Shestakov & Offner (2008). The one-dimensional computational domain
in physical units is (0, 1.0285926 × 106) cm, corresponding to (0, 5.12) in dimensionless units. We use a symmetry
boundary condition at the lower boundary, and a Marshak boundary with no incoming flux at the upper boundary
(i.e., Eg + (2/3κg)∂Eg/∂x = 0). The mass density is 1.8212111 × 10−5 g cm−3. The specific heat capacity of the
matter at constant volume is 9.9968637 × 107 ergK−1g−1. Initially, the temperature is set to 0.1 keV and 0, for
x < 0.5 and x > 0.5, respectively. Here, x is a dimensionless coordinate. The radiation energy density is initially
set to zero everywhere. The constant Cκ is set to 4.0628337× 1043 cm−1Hz3. The fixed temperature in the group-
integrated radiation emission (Equation 98) is Tf = 0.01 keV, corresponding to Tf = 0.1 in dimensionless units. We
use 64 radiation groups with the lowest boundary at zero. The width of the first group is set to 1.2089946× 1013 Hz,
corresponding to 5× 10−4 in dimensionless units, and the width of other groups is set to be 1.1 times the width of its
immediately preceding group. The representative frequency for each group is set to νg =

√
νg−1/2 νg+1/2, except that

ν1 is set to 0.5 ν3/2 for the first group. We have run a simulation with 2048 uniform cells. Thus the dimensionless

cell size is 1/400. The time step is fixed at 5.8034112× 10−8 s, corresponding to 1/200 in dimensionless units. No
acceleration scheme is used in this test. Figure 1 shows the results after 200 steps. The comparison with the tabular
data of Shestakov & Offner (2008) is shown in Table 1. Relative errors are computed as ǫ(f) = |fn − fe|/fe, where fn
and fe are the numerical and exact results, respectively. Because the tabular data of the exact solution are located
on the faces of numerical cells, averaging of the numerical data has been performed for the comparison. The results
are in excellent agreement with the exact solution, and are comparable to the numerical results of Shestakov & Offner
(2008).
To assess the convergence behavior of our implicit scheme, we have performed a series of uniform-grid and AMR

simulations of the linear multigroup diffusion test problem with various resolutions. The initial setup is the same as
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TABLE 2
L1-norm errors and convergence rate for
the total radiation energy density at the

dimensionless time of 1 in the linear
multigroup diffusion test problem. Four
one-dimensional uniform-grid runs with

various resolutions are shown. The errors
are computed on the dimensionless domain

of (0, 1).

∆x ∆t L1 Error Convergence Rate

1/100 2/25 2.91E-3
1/200 1/50 7.36E-4 2.0
1/400 1/200 1.90E-4 1.9
1/800 1/800 4.87E-5 2.0

TABLE 3
L1-norm errors and convergence rate for the total

radiation energy density at the dimensionless time of 1
in the linear multigroup diffusion test problem. Four
one-dimensional AMR runs with various resolutions are
shown. The errors are computed on the dimensionless

domain of (0, 1).

∆xa ∆tb L1 Error Convergence Rate

1/50, 1/100 4/25, 2/25 3.58E-3
1/100, 1/200 1/25, 1/50 1.05E-3 1.8
1/200, 1/400 1/100, 1/200 2.69E-4 2.0
1/400, 1/800 1/400, 1/800 6.82E-5 2.0

a Cell size on levels 0 and 1
b Time step on levels 0 and 1

above except for spatial resolution and time step. Two levels are used in the AMR runs with the dimensionless domain
of (0.25,0.75) covered by the fine (i.e., level 1) grids. In the convergence study, when the spatial resolution changes
by a factor of 2 from one run to another, we change the time step by a factor of 4. Because our implicit scheme is
first-order in time and second-order in space, the expected convergence rate in the convergence study is second-order
with respect to ∆x. Tables (2) and (3) show the L1-norm errors and convergence rate for the total radiation energy
density on the dimensionless spatial domain of (0, 1) at the dimensionless time of 1. Here, the L1-norm error of the
total radiation energy density is computed as

ǫ1(Er) =

∑

i |Er,i − Er(xi)|∆xi
∑

iEr(xi)∆xi
, (99)

where Er,i =
∑

g Eg,i is the numerical result for cell i and Er(xi) is the “exact” solution obtained from a high-resolution

uniform-grid simulation with ∆x = 1/3200 and ∆t = 1/12800. The results of both uniform-grid and AMR simulations
demonstrate second-order convergence rate with respect to ∆x as expected. Because only part of the domain in the
AMR runs is covered by fine grids, the AMR runs have somewhat larger errors than the uniform-grid runs with the
same resolution as the fine grids.

4.1.2. Nonequilibrium Radiative Transfer With Picket-Fence Model

Su & Olson (1999) have studied a nonequilibrium radiative transfer problem with a multigroup model, more specif-
ically the picket-fence model. There are some special assumptions in this test problem. The volumetric heat capacity
at constant volume is assumed to be cv = αT 3, where T is the matter temperature and α is a parameter. The
group-integrated Planck function is assumed to be

Bg = pg

( ac

4π

)

T 4, (100)

where a is the radiation constant, and pg are parameters such that
∑

g pg = 1. It is also assumed that the absorption

coefficient is independent of temperature and there is no scattering. Su & Olson (1999) have also defined dimensionless
variables for convenience. The dimensionless spatial coordinate is defined as

x = κ̄z, (101)

where z is the coordinate in physical units, and

κ̄ =
∑

g

pgκg. (102)
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Fig. 2.— Nonequilibrium radiative transfer with picket-fence model. Numerical results of U1, U2, and V are shown for τ = 3 (solid lines)
and 30 (dashed lines). Also shown are analytic results for τ = 3 (circles) and 30 (diamonds).

The dimensionless time is defined as

τ =

(

4acκ̄

α

)

t, (103)

where t is the time in physical units. The dimensionless variables Ug for radiation energy density and V for matter
energy density are defined as

Ug =
Eg

aT 4
0

, (104)

V =

(

T

T0

)4

, (105)

where T0 is a reference temperature. In this test problem, there is a constant radiation source that exists for a finite
period of time (0 ≤ τ ≤ τ0) on a finite range (|x| < x0). Su & Olson (1999) have found analytic solutions to the
problem for both transport and diffusion approaches.
Here, we simulate the Case C of Su & Olson (1999) by solving the multigroup diffusion equations (Equations 95

& 96), and compare the results with the diffusion solution of Su & Olson (1999). Two radiation groups are used
in this test, with p1 = p2 = 0.5. The absorption coefficients are set to κ1 = 2/101 cm−1 and κ2 = 200/101 cm−1.
Thus, κ̄ = 1 cm−1. The constant α in the expression for volumetric heat capacity is set to α = 4a. The reference
temperature is chosen as T0 = 106K. The parameters for the radiation source are x0 = 0.5, and τ0 = 10. When τ < τ0,
the radiation source deposits radiation energy to the region |x| < x0 and increases the radiation energy density at a
rate of pgcκ̄aT

4
0 for each group. The computational domain is 0 < x < 102.4 covered by 1024 uniform cells. The lower

boundary is symmetric, and the radiation energy density outside the upper boundary is set to zero. Initially, there is
no radiation and the temperature is zero. A fixed time step ∆τ = 0.1 is employed. The explicit solver is turned off
in the simulation, and the radiation flux is not limited. No acceleration scheme is used in this test. The numerical
results are shown in Figure 2. Our results are in excellent agreement with the analytic solution.

4.1.3. Radiating Sphere

Graziani (2008) found an analytic solution for the spectrum of a radiating sphere in a medium with frequency-
dependent opacity. This test was used by Swesty & Myra (2009) to test their V2D code. In this test, a hot sphere
with a fixed temperature is surrounded by a cold static medium. The absorption coefficient is assumed to be zero,
and the radiative transfer is due to coherent and isotropic scattering. Thus, there is no radiation-matter coupling or
group coupling. The time-dependent spectrum at a given place in the medium is therefore the superposition of the
black-body spectrum of the medium and the spectrum of the radiation originated from the hot sphere.
We perform this test in one-dimensional spherical geometry. The computational domain is 0.02 cm < r < 0.1 cm and

is covered by 128 uniform cells. The hot sphere has a fixed temperature of 1.5 keV, and the medium is at 50 eV. We
use 60 energy groups covering an energy range of 0.5 eV to 308 keV. The group Rosseland mean coefficient is assumed
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Fig. 4.— Shock tube at t = 10−6 s. Numerical results from a full radiation hydrodynamics calculation with 16 radiation groups and
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are shown in solid lines for comparison. We show mass density (ρ), velocity (v), total pressure (ptot), and radiation energy density (Er).
For the radiation hydrodynamics simulation, the total pressure is the sum of gas pressure and radiation pressure, and the radiation energy
density is summed over all groups. In the pure hydrodynamic Riemann problem, there is no radiation energy density. All quantities are in
cgs units.

to be χg = 1013(νg/3.6 × 1014Hz)−3 cm−1. The explicit solver is turned off. No acceleration scheme is used in this
test. There is no outer iteration in the implicit solver because the matter properties do not change. The time step is
fixed at 10−15 s. The spectrum at r = 0.06 cm and t = 10−12 s is shown in Figure 3. The numerical results are again
in good agreement with the analytic solution.

4.1.4. Shock Tube Problem In Strong Equilibrium Regime

In this one-dimensional problem, the initial conditions of the matter are ρL = 10−5 g cm−3, TL = 1.5 × 106K,
uL = 0 and ρR = 10−5 g cm−3, TR = 3 × 105K, uR = 0, where L stands for the left half, and R the right half of
the computational domain (0 < x < 100 cm). The gas is assumed to be ideal with an adiabatic index of γ = 4/3
and a mean molecular weight of µ = 1. Initially, the radiation is assumed to be in thermal equilibrium with the gas
(i.e., Eg = 4πBg/c). The interaction coefficients are set to κg = 106 cm−1 and χg = 108 cm−1. Thus, due to the
huge opacities, the system is close to the limit of strong equilibrium with no diffusion, and is essentially governed
by Equations (30)–(34) with λg = 1/3 and fg = 1/3. The parameters of this test problem are chosen such that
neither radiation pressure nor gas pressure can be ignored. This test is adapted from the shock tube problem in
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Paper II. However, the adiabatic index of the gas is now γ = 4/3 rather than 5/3 so that we can compare the
numerical results with the exact solution of a pure hydrodynamic Riemann problem. Furthermore, although this is
a one-temperature gray problem due to the huge opacity, the numerical calculation is performed with 16 radiation
groups with the lowest and uppermost boundaries at 1014Hz and 1018Hz, respectively. We use 128 uniform zones in
this test. The numerical results are shown in Figure 4. Also shown are the exact solutions of a pure hydrodynamic
Riemann problem corresponding to the numerical problem. The results show good agreement. We also note that our
scheme is stable without using small time steps even though the system is in the “dynamic diffusion” limit (Mihalas &
Mihalas 1999) with τu/c ∼ 107, where τ is the optical depth of the system. Either the gray acceleration scheme or the
local acceleration scheme (§ 3.2.4) must be employed in this test, otherwise the implicit solver, which is responsible
for the thermal equilibrium between radiation and matter, exhibits extremely slow convergence.

4.1.5. Nonequilibrium Radiative Shock

In this test, we simulate the Mach 5 shock problem of Lowrie & Edwards (2008). In Paper II, we showed results
computed with the gray radiation hydrodynamics solver. Here, we present the numerical results obtained with the
multigroup radiation hydrodynamics solver. In this test, the one-dimensional numerical region (−4000 cm, 2000 cm)
initially consists of two constant states: ρL = 5.45969 × 10−13 g cm−3, TL = 100K, uL = 5.88588× 105 cm s−1 and
ρR = 1.96435 × 10−12 g cm−3, TR = 855.720K, uR = 1.63592 × 105 cm s−1, where L stands for the left, and R the
right of the point x = 0, respectively. The gas is assumed to be ideal with an adiabatic index of γ = 5/3 and a mean
molecular weight of µ = 1. The setup is the same as that in Paper II 4 except that 16 radiation groups are used in
this paper. The lowest and uppermost boundaries of the groups are at 1010 Hz, and 1015Hz, respectively. Initially, the
radiation is assumed to be in thermal equilibrium with the gas (i.e., Eg = 4πBg/c). The interaction coefficients are
set to κg = 3.92664× 10−5 cm−1 and χg = 0.848903 cm−1, respectively. The states at spatial boundaries are held at
fixed values. Four refinement levels (five total levels) are used with a refinement factor of 2 with the finest resolution
being ∆x ≈ 1.5 cm. In this test, a cell is tagged for refinement if the second derivative of either density or temperature
exceeds certain thresholds (Paper II). The initial conditions are set according to the pre-shock and post-shock states
of the Mach 5 shock. After a brief period of adjustment, the system settles down to a steady shock. The simulation
is stopped at t = 0.04 s. The results are shown in Figure 5. The agreement with the analytic solution including the
narrow spike in temperature is excellent, except that the numerical results in the figure had to be shifted by −207 cm
in space to match the analytic shock position. This discrepancy in shock position is due to the initial transient phase
as the initial state relaxes to the correct steady-state profile. No flux limiter is used in this calculation because the
analytic solution of Lowrie & Edwards (2008) assumes λ = 1/3. We again found that the implicit solver would fail

4 Unlike the simulation shown in Paper II, the simulation here used the 2010 CODATA recommended values of the fundamental physical
constants. Therefore, the physical values of the states have changed slightly.
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to converge without an acceleration scheme. Both the gray acceleration scheme and the local acceleration scheme
(§ 3.2.4) work in this test.

4.1.6. Advecting Radiation Pulse

In Paper II, we performed a test of advecting a radiation pulse by the motion of matter with the gray radiation
hydrodynamics solver (see also Krumholz et al. 2007). Here, we repeat the test with small changes to exercise the
multigroup aspect of CASTRO. The setup is the same as that in Paper II, except that the absorption coefficient κ in
this paper is given by

κ = 180

(

T

107K

)−0.5
( ν

1018Hz

)−3
[

1− exp

(

− hν

kT

)]

cm−1. (106)

As in the test in Paper II, the initial temperature and density profiles are

T =T0 + (T1 − T0) exp

(

− x2

2w2

)

, (107)

ρ=ρ0
T0
T1

+
aµ

3R

(

T 4
0

T
− T 3

)

, (108)

where T0 = 107K, T1 = 2 × 107K, ρ0 = 1.2 g cm−3, w = 24 cm, the mean molecular weight of the gas is µ = 2.33,
and R is the ideal gas constant. Initially the radiation is assumed to be in thermal equilibrium with the gas. No flux
limiter is used in this test (i.e., λ = 1/3 and f = 1/3). If there were no radiation diffusion, the system would be in
an equilibrium with the gas pressure and radiation pressure balancing each other. Because of radiation diffusion, the
balance is lost and the gas moves.
The purpose of this test is twofold. First, we use this test to assess the ability of the code to handle radiation

being advected by the motion of matter. We solve the problem numerically in different laboratory frames. Then
we compare the case in which the gas is initially at rest to the case in which the gas initially moves at a constant
velocity. Another purpose is to assess the effect of group resolution. Since the opacity is very large, the system is
close to thermal equilibrium between radiation and matter. Hence, the results of multigroup radiation hydrodynamics
simulations should become increasingly close to those of a gray radiation hydrodynamics simulation as more groups
are used.
We have performed four runs: an unadvected run with 8 radiation groups, an advected run with 8 groups, an advected

run with 64 groups, and an advected run using the gray radiation hydrodynamics solver presented in Paper II. The
velocity in the unadvected run is initially zero everywhere, whereas in the advected runs it is 106 cm s−1 everywhere.
For the multigroup runs, the lowest and uppermost group boundaries are at 1015Hz and 1019Hz, respectively. In the
gray simulation, the single group Planck mean coefficient, κP, and Rosseland mean coefficient, κR, of the opacity given
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by Equation (106) are

κP=3063.96

(

T

107 K

)−3.5

cm−1, (109)

κR=101.248

(

T

107 K

)−3.5

cm−1. (110)

The computational domain in all four runs is a one-dimensional region of −512 cm < x < 512 cm with periodic
boundaries. The numerical grid consists of 512 uniform cells. The simulations are stopped at t = 4.8 × 10−5 s.
Figure 6 shows the density, velocity, and temperature profiles for all four runs. The results of the advected runs
have been shifted in space for comparison. The profiles from the unadvected 8-group run and the advected 8-group
run are almost identical demonstrating the accuracy of our scheme in handling radiation advection by the motion of
matter. This is expected because the velocity is significantly smaller than the speed of light (v/c ∼ 3 × 10−5). The
results from the advected 64-group run and the gray run are also almost identical as expected. It is clear that the
8-group results differ from the gray results. This is not surprising because we did not perform group averaging for
interaction coefficients (Equations 21 & 22). We also show the relative differences in Figure 7. The relative difference
of the advected 8-group run with respect to the unadvected 8-group run is computed as (advected - unadvected) /
unadvected, and the relative difference of the 64-group run with respect to the gray run is computed as (multigroup -
gray) / gray. The figure shows that the difference between the advected 8-group and unadvected 8-group runs is less
than 0.03% everywhere, and the difference between the 64-group and gray runs is less than 0.1% everywhere.

4.1.7. Static Equilibrium

In Paper II, we have demonstrated that the gray solver can maintain a perfect static equilibrium in multiple dimen-
sions because the radiation pressure and the gas pressure are coupled in the Riemann solver. Here, we repeat the test
using the multigroup solver. The setup is the same as that in Paper II. The initial conditions for radiation and matter
are the same as those in the test of the advecting radiation pulse (§ 4.1.6) except that the interaction coefficients are
set to a very high value, κg = χg = 1020 cm2 g−1 × ρ. Thus, almost no diffusion can happen, and the radiation and
the matter are in perfect thermal equilibrium. We have performed a calculation on a two-dimensional Cartesian grid
of −512 cm < x < 512 cm and −512 cm < y < 512 cm with 512 uniform cells in each direction. The initial velocity is

zero everywhere. For the initial setup, the coordinate x in equation (107) is replaced by r =
√

x2 + y2. We use 16
radiation groups with the lowest and uppermost boundaries at 1015Hz and 1019Hz, respectively. Figure 8 shows the
velocity profile at t = 10−4 s (after about 6000 steps). The maximal velocity at that time is ∼ 8× 10−8 cm s−1, which
is about 10−15 of the sound speed. Such a small gas velocity indicates that the multigroup solver in CASTRO can
also maintain a perfect static equilibrium in multiple dimensions, as does the gray solver in CASTRO.

4.2. Core-Collapse Supernova Simulations

In this section, we present core-collapse supernova simulations in 1D spherical and 2D cylindrical coordinates.
Newtonian gravity with a monopole approximation is used in the 2D simulation for simplicity, although CASTRO
has a multigrid Poisson solver for gravity. In the simulations, there are three neutrino species: electron neutrinos,
νe, electron antineutrinos, ν̄e, and νµ which stands for a combined species representing νµ, ντ , ν̄µ, and ν̄τ . We



20 Zhang et al.

400 200 0 200 400
x (cm)

400

200

0

200

400

y 
(c

m
)

0.0

5e-09

1e-08

1.5e-08

2e-08

|v
|

Fig. 8.— Structure of the magnitude of velocity at t = 10−4 s in the static equilibrium test. The unit of velocity is cm s−1.

use a tabular equation of state that provides thermodynamic quantities as a function of temperature, density, and
electron fraction and was constructed from the Shen et al. (1998a,b) mean-field table, augmented with photons and a
general electron/positron equation of state, and extended down to 10 g cm−3. The opacities used are fully described
in Burrows et al. (2006). They include 1) elastic scattering off nucleons, alpha particles, and the single representative
heavy nucleus at the peak of the binding energy curve calculated by Shen et al. (1998a,b), and 2) charged-current
absorption cross sections off nucleons and nuclei (the latter using the approach of Bruenn (1985)). The scattering and
absorption cross sections off nucleons are corrected for weak magnetism and recoil effects, the form factor, electron
screening, and ion-ion correlation effects on Freedman scattering off nuclei are applied, and pair production by nucleon-
nucleon bremsstrahlung and electron-positron annihilation (and their inverses) are included as sources (and sinks).
The sink terms of the latter do not include Fermi blocking corrections by the neutrinos in the final state. Inelastic
neutrino-electron scattering is treated as elastic scattering.

4.2.1. One-Dimensional Core-Collapse Supernova Simulation

We present here a core-collapse supernova simulation in one-dimensional spherical coordinates. The initial model is
based on a 15M⊙ progenitor of Woosley &Weaver (1995). The computational domain for this run is 0 < r < 5×108 cm.
The simulation employs four refinement levels (five total levels) with 1024 zones on the coarsest level (i.e., level 0)
and a resolution of ∆r ≈ 0.305 km on the finest level (i.e., level 4). The AMR refinement factor is 2. The regions
where the density is greater than 7.2 × 106 g cm−3, or the enclosed mass is greater than 1.32M⊙ are refined to level
2. In addition, cells on level ℓ will be refined to level ℓ + 1 if Ye < 0.4, s > 5, ∇Ye > 0.01/∆rℓ, or ∇s > 1/∆rℓ,

where ℓ < 4, s is entropy in units of k baryon−1, and ∆rℓ is the cell width on level ℓ. We use 40 energy groups for
electron neutrinos with the first group at 1MeV and the last group at 300MeV. We use 32 energy groups for electron
antineutrinos with the first and last groups at 1MeV and 100MeV, respectively. For νµ, we use 40 energy groups with
the first and last groups at 1MeV and 300MeV, respectively. The flux limiter of Levermore & Pomraning (1981) is
used is this simulation. The local acceleration scheme is employed. The inner boundary is symmetric. An outflow
boundary condition is used for the outer boundary in the explicit solver. The modified Marshak boundary of Sanchez
& Pomraning (1991) with zero incoming flux is used for the outer boundary in the implicit solver. Thus, the region
outside the outer boundary is essentially treated as a vacuum, and the radiation diffuses into the vacuum. Note that
in the usual Marshak boundary based on the classical diffusion theory, the flux at the boundary does not have the
correct behavior in the streaming limit, and the issue has been fixed in the modified Marshak boundary of Sanchez &
Pomraning (1991) by using flux limited diffusion.
The simulation is carried out to 200 ms after core bounce. Figure 9 shows four snapshots of density, velocity,

temperature, entropy, electron fraction, and net electron lepton fraction (YL). The infall of the material due to
gravity results in the increase of the central density until the core bounces. At bounce, the density reaches ρcore ≈
2.9× 1014 g cm−3 at the core. A shock appears around bounce at Msh ≈ 0.635M⊙. The electron and lepton fractions
at bounce are Y core

e ≈ 0.288 and Y core
L ≈ 0.326, respectively, at the core. The core temperature at bounce is T core ≈

9.98 MeV. The core entropy at bounce is score ≈ 0.901 k baryon−1. These properties are in agreement with previous
studies (e.g., Rampp & Janka 2000; Liebendörfer et al. 2001; Thompson et al. 2003). In a recent study, Lentz et al.
(2012) have obtained Msh ≈ 0.492M⊙, ρcore ≈ 4.264×1014g cm−3, Y core

e ≈ 0.2407, and Y core
L ≈ 0.2782 for their model

N-FullOp at bounce, and Msh ≈ 0.717M⊙, ρcore ≈ 3.336× 1014 g cm−3, Y core
e ≈ 0.3046, and Y core

L ≈ 0.3696 for their
model N-ReduceOp at bounce. Except for ρcore, the properties of our model at bounce are in between those in models
N-FullOp and N-ReduceOp of Lentz et al. (2012).
Figure 9 shows a spike near the shock in the Ye and YL profiles shortly after bounce (see also Lentz et al. 2012).
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are shown for 0 (black solid lines), 1 ms (red dashed lines), 15 ms (green dotted lines), and 115 ms (blue dash-dotted lines) after bounce.
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Fig. 10.— Shock radius vs. post-bounce time for the 1D core-collapse supernova simulation. The shock position is defined as the place
with the largest negative gradient of radial velocity. The peak shock radius reaches ∼ 140 km at ∼ 100 ms after bounce.

The spike of YL is caused by electron neutrinos leaking out of the shock. The absorption of some of those neutrinos
by the pre-shock material results in a spike of Ye. In the post-shock region, the minimal Ye drops rapidly for the
first few milliseconds after bounce due to electron capture; it then becomes steady at ∼ 0.065− 0.075. The velocity
in some region behind the shock is positive for the first ∼ 2 ms after bounce; the maximum positive velocity reaches
∼ 2 × 109 cm s−1 similar to the maximum positive velocity in Thompson et al. (2003). The maximum temperature
in the shocked region increases rapidly to 17.5 MeV at ∼ 0.1 ms after bounce; it then decreases quickly as the shock
expands outward in radius; it increases again and reaches ∼ 22 MeV at 200 ms after bounce due to compression and
deleptonization as matter settles onto the proto-neutron star. The evolution of the temperature, electron fraction and
velocity profiles is in agreement with that in previous studies (e.g., Thompson et al. 2003).
In Figure 10, we show shock radius as a function of time. For the first few milliseconds after bounce, the shock

expands very rapidly in radius, and reaches ∼ 72 km. The peak shock radius reaches ∼ 140 km at ∼ 100 ms after
bounce. After that the shock slowly shrinks in radius although it continues to grow in mass.
The comoving frame luminosities of νe, ν̄e, and νµ neutrinos measured at 500 km are shown in Figure 11. In

agreement with previous studies (e.g., Thompson et al. 2003; Marek & Janka 2009; Lentz et al. 2012), there is a small
dip in Lνe after the initial rise. The dip is followed by a large pulse in Lνe that reaches 540 Bethe s−1 at 4 ms after
bounce. The full width at half maximum for Lνe is ∼ 7 ms. The peak Lνe in our model is about 20% larger than
that in Marek & Janka (2009); Lentz et al. (2012). In our results, there is also a noticeable spike in Lνµ . Note that
Thompson et al. (2003); Lentz et al. (2012) have obtained somewhat similar spikes in their simulations that did not
include inelastic scattering. The lack of inelastic scattering of neutrinos on electrons results in harder neutrino spectra,
especially for νµ, as shown in the rms average energies (Figure 12). Here the rms average is defined as

〈ǫν〉 =
[
∫

ǫ2νnνdν
∫

nνdν

]1/2

, (111)
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Fig. 11.— Comoving frame luminosities of νe (red solid line), ν̄e (green dotted line), and νµ neutrinos (blue dashed line) measured at
500 km for the 1D core-collapse supernova simulation. The luminosity of electron neutrinos reaches a peak value of 540 Bethe s−1 at 4 ms
after bounce. For Lνe , the full width at half maximum is ∼ 7 ms. There is also a noticeable spike in the luminosity of νµ neutrinos with a
peak value of 160 Bethe s−1 at 17 ms after bounce.
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Fig. 15.— Density (upper left), radial velocity (lower left), temperature (upper center), entropy per baryon (lower center), electron
fraction (upper right), and net lepton fraction (lower right) as a function of enclosed mass at 1.5 ms after bounce. Here, radial velocity is
the velocity in spherical radial direction. We show the results of the 2D cylindrical simulation (red solid lines), 1D low-resolution spherical
run (blue dashed lines), and 1D high-resolution spherical run (green dotted lines). The radial profiles of the 2D results are generated via
averaging.

where ǫν is the neutrino energy and nν is the monochromatic neutrino number density. Nevertheless we obtain
〈ǫνe〉 < 〈ǫν̄e〉 < 〈ǫνµ〉 after the initial phases, as expected. At 200 ms after bounce, we obtain 〈ǫνe〉 ≈ 14, 〈ǫν̄e〉 ≈ 19,
and 〈ǫνµ〉 ≈ 26MeV. The luminosity spectra measured at 500 km in the comoving are shown Figure 13. The spectra
are evidently harder than those in Thompson et al. (2003) because inelastic scattering is not included in our model.

4.2.2. Two-Dimensional Core-Collapse Supernova Simulation

Here we present a two-dimensional core-collapse supernova simulation. The computational domain for this 2D
cylindrical run is 0 < r < 2.5 × 108 cm and −2.5 × 108 cm < z < 2.5 × 108 cm. Two refinement levels (three total
levels) with a refinement factor of 4 are used. The coarsest level has 256 and 512 cells at r-direction and z-direction,
respectively. Thus the size of the cells on the finest level is about 0.61 km. The same refinement criteria as those in
the 1D simulation in Section 4.2.1 are used. We use 20, 16, and 20 groups with logarithmic spacing for νe, ν̄e, and νµ,
respectively. The other aspects of this 2D run such as the outer boundary and flux limiter are the same as those in the
1D simulation in Section 4.2.1. We start the 2D simulation from the result of a 1D simulation rather than the 15M⊙

presupernova model. The initial model is obtained from the 1D simulation at about 10 ms before bounce. At that
time, multi-dimensional effects are expected to still be small. The 1D simulation that provides the initial model for
the 2D run has similar resolution as the 2D run. Note that, other than resolution, the low-resolution 1D simulation
here is essentially the same as the 1D high-resolution simulation in Section 4.2.1.
Figure 14 shows the density, entropy, temperature, and electron fraction profiles at 1.5 ms after bounce. The profiles

are still highly symmetric. Spherically averaged profiles of density, velocity, temperature, entropy, electron fraction,
and lepton fraction at 1.5 ms are shown in Figure 15. Also shown in Figure 15 are the results of the two 1D runs. At
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Fig. 16.— Entropy at 4.1 (left) and 9.8 ms (right) after bounce for the 2D cylindrical core-collapse supernova simulation. The white and
black contour lines in the left panel denote s = 7.5 and 5 k baryon−1, respectively. The arrows in the right panel show the velocity field in
the shocked region at 9.8 ms after bounce. It is shown that convection has developed in the shocked region at 9.8 ms after bounce.

this point, the 2D results are only slightly different from the 1D results. However, in some region behind the shock, the
gradient of entropy is negative. A negative entropy gradient region from ∼ 70 km to ∼ 100 km is also clearly visible in
the entropy profile at 4.1 ms (left panel of Figure 16). The white and black contour lines in the left panel of Figure 16

denote s = 7.5 and 5 k baryon−1, respectively. Convective instabilities can potentially develop in the region between
∼ 60 km and 90 km. In fact, convection does emerge quickly in our simulation. In the right panel of Figure 16, we
show the entropy profile at 9.8 ms after bounce. Also shown in the figure is the velocity field. High entropy plumes
rise while some low entropy material falls down. Secondary Kelvin-Helmholtz instabilities also develop in the shearing
regions. The convection helps push the shock outwards because of the enhanced material energy transport from the
inner hot region to the region behind the shock by the convective motion. Figure 17 shows the density, entropy,
temperature, and electron fraction profiles at 20 ms after bounce. The shock has moved to ∼ 200 km at 20 ms in the
2D simulation (see also Figure 18). At 40 ms after bounce, the north pole and the south pole of the shock have moved
to ∼ 450 km. In contrast, in the 1D simulation in Section 4.2.1 (Figure 10), the shock radius is ∼ 85 km at 20 ms and
it never exceeds 141 km. The comoving frame luminosities of νe, ν̄e, and νµ neutrinos measured at 500 km for the 2D
simulation are shown in Figure 19. Also shown in Figure 19 are the results of the 1D low-resolution run, which are
nearly identical to those of the 1D high-resolution results (Figure 11). In the 2D results, there is also a large narrow
pulse in Lνe that rises and drops at roughly the same rate. However, after ∼ 7 ms past bounce, the 2D results are
qualitatively different from the 1D results because of the emergence of the convection. A major difference is that νµ
neutrinos are much less luminous in 2D than 1D, because the temperature in 2D is cooler than that in 1D due to the
rapid expansion of 2D shock.
Since this paper is not on core-collapse supernova explosions per se, the 2D simulation is stopped at ∼ 55 ms after

bounce. A detailed analysis of the 2D simulation is beyond the scope of this paper on algorithm, implementation, and
testing.

5. PARALLEL PERFORMANCE

In paper II, we demonstrated that the gray radiation solver in CASTRO has very good scaling behavior on up to
32768 cores via a weak scaling study. The multigroup radiation solver presented in this paper has similar good weak
scaling behavior because the same module for solving Equation (65) is used in both solvers. Here we present a strong
scaling study that was carried out on Hopper, a petascale Cray XE6 supercomputer at the National Energy Research
Scientific Computing Center. We have performed a series of three-dimensional core-collapse supernova simulations in
Cartesian coordinates with the same resolution on various numbers of cores. A hybrid MPI/OpenMP approach with 6
OpenMP threads per MPI task was used for these simulations. PFMG, a parallel multigrid solver from hypre (Falgout
& Yang 2002; hypre Code Project 2012), was used to solve the linear systems. In each run, we start the 3D simulation
from the result of a 1D simulation at about 10 ms before bounce. We use 12 energy groups for each species (νe, ν̄e,
and νµ). The computational domain is a three-dimensional box with a size of 5000 km in each dimension. Three
refinement levels (four total levels) are used with a refinement factor of 2 between level 0 and level 1, and a refinement
factor of 4 for other levels. The coarsest level has 2563 cells. The finest level, which approximately covers the inner

region of
√

x2 + y2 + z2 < 165 km, has a cell size of 0.61 km. Figure 20 shows the wall clock time per coarse time step
for a series of runs with the number of cores ranging from 1536 to 24576. Also shown in Figure 20 is parallel efficient
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defined as

E(N) =
N0T0
NTN

, (112)

where N is the number of cores, TN is the wall clock time for the N -core run, N0 is the number of cores in a baseline
run (i.e., 1536-core run), and T0 is the wall clock time for the baseline run. In this strong scaling study, good scaling
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Fig. 20.— Strong scaling behavior of 3D simulations on Hopper at NERSC. We show (a) wall clock time per coarse time step and (b)
parallel efficiency in circles for five runs with the number of cores ranging from 1536 to 24576. The dotted line in panel (a) indicates perfect
scaling.

behavior is achieved on up to ∼ 10000 cores. However, because this is a strong scaling study, the work load per
core diminishes as more cores are used. For example, the average number of cells for each core in the 24576-core
run is about 163. An unfavorable consequence of small computational boxes is an increased communication overhead.
Another unfavorable consequence is that more computation is wasted at domain boundaries due to larger surface area
to volume ratios of smaller boxes. Hence, the degradation of parallel performance on more than 10000 cores is not
surprising.

6. SUMMARY

In this paper, we have presented a multi-dimensional multigroup radiation hydrodynamics solver that is part of the
CASTRO code. Block-structured AMR is utilized in CASTRO. In this paper, we focus attention on the single-level
algorithms because the AMR algorithms have been presented in Papers I, II, and references therein.
Our multigroup radiation hydrodynamics solver is based on a comoving frame formulation that is correct to order

O(v/c), and uses a FLD approximation. Our mathematical analysis shows that the system we solve contains a
hyperbolic subsystem that is the usual hydrodynamics system modified by radiation, a frequency space advection part
that accounts for the Doppler shift of radiation due to the motion of matter, and a parabolic diffusion part. We have
presented the mathematical characteristics of the hyperbolic subsystem. The eigenvalues and eigenvectors we have
obtained are useful for characteristic-based Godunov schemes. We also described our treatment of the frequency space
advection part. An implicit solver involving two nested iterations is presented. We have also presented two acceleration
schemes that improve the convergence rate of the implicit solver.
Extensive testing is presented demonstrating the accuracy and stability of CASTRO to solve multigroup radiation

hydrodynamics problems. We have presented a series of photon radiation test problems that cover a wide range of
regimes. In addition to photon radiation problems, we have demonstrated the applicability of CASTRO in core-collapse
supernova simulations.
Recently, Lentz et al. (2012) have argued, via a series of 1D simulations, that general relativistic effects and inelastic

scattering of neutrinos on matter have significant effects on the numerical modeling of core-collapse supernova explo-
sions. In contrast, Nordhaus et al. (2010) have concluded that spatial dimensionality has far more impact than general
relativistic effects or microphysics such as inelastic scattering. Our 1D simulations are consistent with the assessment
of Lentz et al. (2012) on the effects of inelastic scattering. However, our 2D simulation supports the assessment of
Nordhaus et al. (2010) on the importance of spatial dimensionality. Our simulations have shown that multidimensional
effects (e.g., convective motion in the region behind the shock and exterior to the nascent neutron star) appear less
than 10 milliseconds after bounce, and 2D results are profoundly different from 1D results. Thus, one should be
cautious about assessment of various effects such as inelastic scattering that are based on 1D simulations that last
several hundred milliseconds past bounce like the ones presented in Lentz et al. (2012).
The main advantages of the CASTRO code are the efficiency due to the use of AMR and the accuracy due to the

coupling of radiation force into the Riemann solver. Three-dimensional multigroup neutrino radiation hydrodynamics
simulations of core-collapse supernovae with a good resolution using CASTRO can be carried out, if not now, in the
near future with faster computers. In the strong scaling study with a total of 36 radiation groups and a cell size of
0.6 km on the finest level (Section 5), it took about 0.8 hours to advance one coarse time step (about 0.1ms) on 12288
cores of Hopper. Thus, it would take 800 hours on 12288 cores of Hopper to evolve to 100 ms. Admittedly, it is still
very expensive to perform long-duration 3D simulations, but it is possible to study the first 100 ms after bounce and



Castro Radiation 27

investigate the development of turbulent convection region via 3D simulations.
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E., Dolence, J. C., & Schnetter, E. 2012, ApJ, accepted

Alme, M. L., & Wilson, J. R. 1973, ApJ, 186, 1015
Almgren, A., Bell, J. B., Colella, P., Howell, L. H., & Welcome,

M. L. 1998, Journal of Computational Physics, 142, 1
Almgren, A. S. et al. 2010, ApJ, 715, 1221
Bell, J. B., Colella, P., & Trangenstein, J. A. 1989, Journal of

Computational Physics, 82, 362
Bethe, H. A. 1990, Reviews of Modern Physics, 62, 801
Bowers, R. L., & Wilson, J. R. 1982, ApJS, 50, 115
Bruenn, S. W. 1985, ApJS, 58, 771
Bruenn, S. W., Buchler, J. R., & Yueh, W. R. 1978, Ap&SS, 59,

261
Buchler, J. R. 1983, J. Quant. Spec. Radiat. Transf., 30, 395
Buras, R., Rampp, M., Janka, H.-T., & Kifonidis, K. 2006, A&A,

447, 1049
Burrows, A., Hayes, J., & Fryxell, B. A. 1995, ApJ, 450, 830
Burrows, A., Livne, E., Dessart, L., Ott, C. D., & Murphy, J.

2007, ApJ, 655, 416
Burrows, A., Reddy, S., & Thompson, T. A. 2006, Nuclear

Physics A, 777, 356
Burrows, A., Young, T., Pinto, P., Eastman, R., & Thompson,

T. A. 2000, ApJ, 539, 865
Castor, J. I. 2004, Radiation Hydrodynamics (Cambridge, UK:

Cambridge University Press)
Clark, B. A. 1987, Journal of Computational Physics, 70, 311
Colella, P., Glaz, H. M., & Ferguson, R. E. 1997, unpublished

manuscript
Eisenstat, S. C. 1981, SIAM Journal on Scientific and Statistical

Computing, 2, 1
Falgout, R., & Yang, U. 2002, in Lecture Notes in Computer

Science, Vol. 2331, Computational Science ICCS 2002, ed.
P. Sloot, A. Hoekstra, C. Tan, & J. Dongarra (Springer Berlin
/ Heidelberg), 632–641

Fryer, C. L., Rockefeller, G., & Warren, M. S. 2006, ApJ, 643, 292
Fryer, C. L., & Warren, M. S. 2002, ApJ, 574, L65
Gittings, M. et al. 2008, Computational Science and Discovery, 1,

015005
Graziani, F. 2008, in Lecture Notes in Computational Science and

Engineering, Vol. 62, Computational Methods in Transport:
Verification and Validation, ed. F. Graziani (Springer Berlin
Heidelberg), 151–167

Harten, A., Lax, P. D., & van Leer, B. 1983, SIAM Review, 25, 35
Herant, M., Benz, W., Hix, W. R., Fryer, C. L., & Colgate, S. A.

1994, ApJ, 435, 339
Hubeny, I., & Burrows, A. 2007, ApJ, 659, 1458
hypre Code Project. 2012, http://www.llnl.gov/CASC/hypre/
Janka, H.-T. 2012, Annual Review of Nuclear and Particle

Science, 62, in press
Janka, H.-T., Langanke, K., Marek, A., Mart́ınez-Pinedo, G., &

Müller, B. 2007, Phys. Rep., 442, 38
Kershaw, D. S. 1976, Flux Limiting Nature’s Own Way, Tech.

Rep. UCRL-78378, Lawrence Livermore National Laboratory
Kotake, K., Sato, K., & Takahashi, K. 2006, Reports on Progress

in Physics, 69, 971
Krumholz, M. R., Klein, R. I., McKee, C. F., & Bolstad, J. 2007,

APJ, 667, 626
Lentz, E. J., Mezzacappa, A., Bronson Messer, O. E.,

Liebendörfer, M., Hix, W. R., & Bruenn, S. W. 2012, ApJ, 747,
73

LeVeque, R. J. 2002, Finite-Volume Methods for Hyperbolic
Problems (Cambridge University Press)

Levermore, C. D. 1984, Journal of Quantitative Spectroscopy and
Radiative Transfer, 31, 149

Levermore, C. D., & Pomraning, G. C. 1981, ApJ, 248, 321
Liebendörfer, M., Messer, O. E. B., Mezzacappa, A., Bruenn,

S. W., Cardall, C. Y., & Thielemann, F.-K. 2004, ApJS, 150,
263

Liebendörfer, M., Mezzacappa, A., Thielemann, F.-K., Messer,
O. E., Hix, W. R., & Bruenn, S. W. 2001, Phys. Rev. D, 63,
103004

Livne, E., Burrows, A., Walder, R., Lichtenstadt, I., &
Thompson, T. A. 2004, ApJ, 609, 277

Lowrie, R. B., & Edwards, J. D. 2008, Shock Waves, 18, 129
Marek, A., & Janka, H.-T. 2009, ApJ, 694, 664
Marinak, M. M., Kerbel, G. D., Gentile, N. A., Jones, O., Munro,

D., Pollaine, S., Dittrich, T. R., & Haan, S. W. 2001, Physics of
Plasmas, 8, 2275

Mezzacappa, A., & Bruenn, S. W. 1993, ApJ, 405, 669
Mihalas, D., & Mihalas, B. W. 1999, Foundations of radiation

hydrodynamics (New York: Dover)
Miller, D. S., Wilson, J. R., & Mayle, R. W. 1993, ApJ, 415, 278
Miller, G. H., & Colella, P. 2002, Journal of Computational

Physics, 183, 26
Minerbo, G. N. 1978, J. Quant. Spec. Radiat. Transf., 20, 541
Morel, J., Larsen, E. W., & Matzen, M. K. 1985,

J. Quant. Spec. Radiat. Transf., 34, 243
Morel, J. E., Brian Yang, T.-Y., & Warsa, J. S. 2007, Journal of

Computational Physics, 227, 244
Nordhaus, J., Burrows, A., Almgren, A., & Bell, J. 2010, ApJ,

720, 694
O’Connor, E., & Ott, C. D. 2010, Classical and Quantum

Gravity, 27, 114103
Ott, C. D., Burrows, A., Dessart, L., & Livne, E. 2008, ApJ, 685,

1069
Rampp, M., & Janka, H.-T. 2000, ApJ, 539, L33
—. 2002, A&A, 396, 361
Sanchez, R., & Pomraning, G. C. 1991,

J. Quant. Spec. Radiat. Transf., 45, 313
Shen, H., Toki, H., Oyamatsu, K., & Sumiyoshi, K. 1998a,

Nuclear Physics A, 637, 435
—. 1998b, Progress of Theoretical Physics, 100, 1013
Shestakov, A. I., & Bolstad, J. H. 2005,

J. Quant. Spec. Radiat. Transf., 91, 133
Shestakov, A. I., & Offner, S. S. R. 2008, Journal of

Computational Physics, 227, 2154
Shu, C.-W., & Osher, S. 1988, Journal of Computational Physics,

77, 439
Su, B., & Olson, G. L. 1999, J. Quant. Spec. Radiat. Transf., 62,

279
Swesty, F. D., & Myra, E. S. 2009, ApJS, 181, 1
Takiwaki, T., Kotake, K., & Suwa, Y. 2012, ApJ, 749, 98
Thompson, T. A., Burrows, A., & Pinto, P. A. 2003, ApJ, 592,

434
van der Holst, B. et al. 2011, ApJS, 194, 23
van Leer, B. 1977, Journal of Computational Physics, 23, 276
Woosley, S. E., & Weaver, T. A. 1995, ApJS, 101, 181
Zhang, W., Howell, L., Almgren, A., Burrows, A., & Bell, J. 2011,

ApJS, 196, 20


